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DASA-1483

FOREWORD

This report describes the development of appropriate apparatus and
experiments to explore the relationship between the response of animals
to air blast and the ambient pressure existing at the time of exposure.
Specifically, the tolerance of mice to overpressure was determined using
the expansion chamber of a specially modified shock tube in which the
local pre-shot pressures were varied from 7 to 4Z psi absolute.

The results and experience from this study will guide the design of
appropriate hardware and the initiation of similar investigations, wherein
larger animal species may be employed in the most economical manner.
The ultimate aim of the work is the accurate prediction of human tolerance
to air blast as a function of reduced pressure associated with aAtitude and
increased pressure corresponding to various locations below sea level.
Thus the findings have applicability in Aviation, Submarine and Environ-
mental Medicine and are significant in air evacuation of blast-produced
casualties, the care and therapy of blast injuries occurring underwater,
inside submarines, aloft in aircraft and in other pressurized locations.



ABSTRACT

Mice, were exposed to overpres ures of "long" duration in the expan-
sion chamber of an air-driven shock tube inside which the initial, pre-
blast pressures were varied over sixfold. When the animals were held
at the initial pressure for one h-our following the bla-t before being re-
turned to the ambient pressure of the laboratory, tolerance values, ex-
pressed as LDP0-1-hour gauge pressures, increased fourfold; they were
20.3, 31.0, 44.5, 55.4, and 91.8 psi for initial pressures of 7, 12, 18,
24, and 42 psia, respectively. When animals were returned to ambient
level soon after blast exposure, the LD press es were lower than the
above values for initial pressures greater than ambient and higher for
initial pressures lower than ambient. The~.easibility of scaling biologi-
cal blast effects as a function of altitude-W" discussed and one approach
suggested by available empirical data WvZs regarded as a promising, but
tentative procedure.
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THE EFFECTS OF AMBIENT PRESSURE ON THE

TOLERANCE OF MICE TO Ai< BLAST

Edward G. Damon, Donald R. Richmond

and Clayton S. White

INTRODUCTION

Although the relationships between biological response to air blast and
varioul parameters of the pressure wave have been investigated in recent
years,--, very little is known about the effects of ambient pressure on mam-
malian tolerance to overpressure. Not only was attention called to this fact
several years ago, 5 but for theoretical and commonsense reasons, it was
predicted that the ambient pressure existing at the time an animal was loaded
with a pressure pulse would be it significant parameter influencing biological
response. Without question, it is important to know whether or not this
speculation has validity, and if so, the magnitude of the effect, because human
exposures to detonation-produced variations in the environment can and do
occur at a variety of ambient pressures such as those existing at different
elevations of terrain, at whatever levels above and below the earth's surface
are available to man and at duty stations inside different manned vehicles and
pressurized spaces wherever they may be.

The present investigation was undertaken to develop shock-tube and re-
iated techniques for exposing anumals to air blast at different ambient pressures
and to explore the tolerance of mice to "sharp"-rising overpressures of '.ong'
duration as related to pre-shot ambient pressures ranging from a fraction of
an atmosphere to several atmospheres.

M TT110DS

Shock Tube

A conventional, circular shock tube. 19 ft 6 in. long and IZ in. in dianeter.
was modified and used to expose mice to air blast at dif'Lrent ambient pressures.
The tube had a wall thickness of 3/8 in.. and as shown diagrammatically in
Figure 1. was divided by a frangible diaphragm into a compression chamber
2 ft 6 in. long and a 17-ft expansion chamLer. The latter was closed V ith an
end-plate on which animal cages were mounted.

Appropriate pipes and valves, to allow pre- and post-shot control of the
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pressure inside the shock tube, were fitted to the expansion and compression
chambers and multiple layers of Dupont Mylar plastic were employed as a
diaphragm. Since experience proved that the Mylar sheets exhibited a con-
sistent bursting pressure when tested on 12-in. tubes, different exposure
pressures were achieved by varying the total thickness of the plastic and
allowing each diaphragm to rupture spontaneously as the compression cham-
ber was progressively pressurized.

Pressure-Time Measurements

On every test, the shock pressures were measured with piezoelectric
gauges mounted side-on in the wall of the tube 6 in. upstream from the end-
plate (Figure 1). Occasionally, gauges were also located on the end-plate
to record the pressure-time wave form at the position of the animals. The
piezoelectric transducers contained sensors of Lead Metaniobate (Model
ST-2, Susquehanna Instruments, Bel Air, Maryland). Each signal from a
pressure transducer was passed through a cathode follower and was displayed
and photographically recorded on a cathode-ray oscilloscope. Details of.the
system and its calibration already have been reported. 4, 6 Typical pressure-
time oscillograms obtained with the gauge mounted side-on in the wall of the
tube are presented in Figure 1.

The overpressure in the expansion chamber before and after each blast
was measured by a Bourdon-type dial pressure gauge (Heise Bourdon Tube
Co., Newton, Connecticut). A mercury manometer gave the pressure levels
when the expansion chamber was partly evacuated. The time required to in-
crease or decrease the pressure in the expansion chamber was carefully
measured with a stopwatch and also checked on oscillograms obtained with
Quartz piezoelectric transducers (Model PZ-4, Kistler Instrument Corpora-
tion, North Tonawanda, New York). The oscilloscopes were triggered so
that the time to increase or release the pressure was recorded.

Figure 2 presents a comparison of the empirical, shock-tube calibration
curve with theoretical data. The results indicate that the measured perform-
ance of the current hardware was within 10 per cent of that prec'icted by the
theoretical relationships. Since this result is consistent with experience re-
ported elsewhere 7 ' 8 as characteristic of air-driven, conventional shock tubes,
it indicates that the methods used to measure shock pressures were reliable
at either reduced or elevated initial ambient pressures.

Animal E\'posure

In all, 672 female mice of the Webster strain were employed. Their
mean body weight was 19.7 "g (standard error of the mean and range were
*0. 84 and 16 - 24 g, respectively). Except where otherwise mentioned, three
animals were exposed per shot. Each animal was oriented right-side-on to
the incident shock in an individual, cylindrical, wire-mesh cage mounted a-
gainst the end-plate. The diameter of the wire from which the cages were con-
structed was 1/16 in. and the inside diameter of the squares of the mesh was
1/4 inch. The cages were arranged 2 in. apart, one above the other. Since
the end-plate of the tube was oriented normal to the incident shock wave, the
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Fig. 2. Comparison of the cali bration curve for the 12-in.
shock tube with the theoretical curve for shock
strength as a function of the starting pressure ratio
(Bleakney, 1949). 7
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animals were subjected to the incident and the reflected shock almost
simultaneously. Consequently, .ne air-blast dose was taken to be the
maximal overpressure in the reflected shock. The duration of the posi-
tive phase of the primr,-y blast wave was 16 - 20 msec, which is much
longer than the "critical duration" for mice. 4 Following the first posi-
tive wave, the animals were subjected-to a series of decreasing secondary
pressure pulses resulting from the reflection of the shock wave from one
end of the tube to the other. Pressure-time record "a" in Figure I is a
typical oscillogram showing these multiple reflections.

Series I

Two hundred and seventy mice were exposed in groups to three levels
of reflected shock pressures while at initial pressures of 7, 12, 18, 24,
and 42 psia. Immediately after the blast, the pressure in the expansion
chamber was quickly adjusted to the respective pre-shot level and then held
for one hour before it was returned to ambient level.

The five overall pressure-time profiles for Series I experiments are
illustrated in Figures 3a - 3e. Indicated are the times required to increase
or decrease the pressure on the animals before and after the blast. For
instance, Figure 3c shows that 25 seconds (tl) were required to increase the
pressure from the atmospheric ambient (P 0 ) of 12 psia to the initial pressure
(Pi) of 18 psia in the expansion section. It was held for 78 seconds (t 2 ) before
the blast. The duration of the blast wave itself was 0. 016 seconds (t 3 ). After
the blast, the pressure stayed at Pb(27 psia) for 2 seconds (t 4 ) before it could
be reduced to the pre-shot level in 18 seconds(t 5). At the end of the 1-hour
hold (t 6 ), the pressure was returned to ambient in 15 seconds (t 7 ).

Controls

Except for exposure to blast overpressures, 16 control animals
were subjected to the pressure-time sequence illustrated in Figure 3e.

Series II

Two hundred and eighty-five mice were exposed to air blast at initial
pressures of 7, 18, ,30, 36, and 42 psia following the general proceduz.s used
in Series I animals, except they were returned to ambient immediately after
blast exposure. The rates of pressure changes previous to and following the
blast were kept similar to those in the Series I studies, except for the absence
of the 1-hour hold period (t 6 ).

Controls

Fifteen Series II control animals were handled as Series I controls
except they were not held for an hour at the pre-shot pressure (PI) of 42 psia.

-5-
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Probit Analysis

Probit analysis was applied to the one-hour mortality data obtained
from "oth experimental series. 9 Thus, the results presented refer to
lethality within one hour following the blast.

In Series I, the total number of animals which were dead when first
observed at the end of the I-hour hold were recorded for the one-hour
mortality. Of these, the number which exhibited signs of rigor mortis
were also recorded. Since some of the animals could have died during
the two minutes required for removing them from the tube following
decompression, probit analysis was applied to both the total one-hour
mortality data and the mortality data based on only those which exhibited
signs of rigor mortis. Since there was no significant difference in the LD 0
values computed from the two sets of data, only the results of the analysis
of the total one-hour mortality data for Series I are presented.

RESULTS

Series I

Probit mortality curves relating the percentage dead in probit units
to the log reflected pressure are presented in Figure 4 for the mice ex-
posed at the five initial pressure levels in Series I. The probit regression
lines were adjusted to an average slope since statistical tests revealed
them to be essentially parallel at the 95-per cent fiducial limits. 9 The LDso
reflected shock pressures with their 95-per cent confidence limits and the
probit regression equations' constants are listed in Table I along with the
associated number of animals. ,As indicated in Table 1, the reflected pres-
sure required for 50-per cent lethality rose as the initdl pressures were
increased. The LD 5 0 pressures were 20.3, 31.0, 44. S, 55.3, and 91.8
psig when mice were exposed at initial pressures of 7. 12, 18, 24, and 42
psia, respectively. Each LDs0 value differed significantly from the others
at the 95-per cent confidence level. Actually, the LD5 0 values increased
linearly with increasing initial pressures. A Bendix G-iS computer was
programmed to fit a regression of the form, log y a a + b log x. to the data.
Figure 5 presents the regression and a log-log plot of the data.

Table 2 compares the LD5 values in terms of reflected overpressure
(psig) and atmospheres (atm) ot the initial pressure (AP/Pi). As noted, the
LD5 0 pressure ratio ranged from 2. 90 to 2. 19 for initial pressures of 7 to
42 psia, respectively. Thus, in terms of atm oL the initial pressure. bio-
logical tolerance decreased somewhat with increases in initial pressure.

'Series U

The results of the probit analysis of the one-hour mortality data from
the series in which the aimals were returned to ambient immediately after

8-
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TABLE I

RESULTS OF PROBIT ANALYSIS OF THE SERIES I DATA

Initial LDs0-1 -hour Probit
Pressure, Number of Reflected Pressure Equation Constants

psia Animals (AP), psig intercept, a slope, b

7 60 20.3 -14.481 14.889**
(19. 0-21. 5)*

12 45 31.0 -17.254 14.889
(29. 3-33. 3)

18 48 44.5 -19.543 14.889
(41.9-47.4)

24 60 55.3 -20.948 14.889
(52.4-58.3)

42 57 91.8 -24. 225 14.889
(86. 1-98.3)

Total 270

*Numbers in parentheses are the 95-percent confidence limits.
**Standard deviation of the slope constant. b - *2. 154.
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TABLE 2

COMPARISON OFI LDs 0 VALUES

Initial
Pressure, LD50 - i-Hour Overpressure
P psia AP, psig atm*( &P/Pi)

7 20.3 2.90

12 31.2 2.60

18 44.5 2.47

24 55.3 2.30

42 91.8 2.19

Average 2.49

*Atmospheres of the initial pressure.

blast exposure are presented in Table 3. The LD50 reflected shock
pressures were 22.7, 37.9, 53.6, 61.3, and 68.4 psig for initial pres-
sures of 7, 18, 30, 36, and 42 psia, respectively. As illustrated in
Figure 5, the LD 50 values were below those of Series I at initial pressures
greater than ambient and above them for initial pressures less than ambient.

Controls

Results of control experiments revealed that the most rigorous
combinations of decompression or compression, hold, and release of
pressure (without the blast) encountered in this study, by themselves,
produced neither deaths nor noticeable injury in m.ce. For instance, groups
of animals were compressed to 67 psia in 225 seconds, held at that level for
2 minutes, and then returaied to 42 psia and held for one hour, after which
the pressure was reduced to 12 psia in 34 seconds. In addition, mice were
compressed to 67 psia in 225 seconds, held there for 2 minutes, and then
returned to 12 psia in 56 seconds.

DISCUSSION

This study, designed to explore the significance of ambient pressure
or blast tolerance, shows an unequivocal increase in resistance to over-
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TABLE 3

RESULTS OF PROBIT ANALYSIS OF THE SERIES II DATA

Initial LD50 o-1 -Hour Probit
Pressure, Number of Reflected Pressure Equation Constants

psia Animals (AP), psig intercept, a slope, b

7 45 22.7 -18.805 17.554**
(21. 0-24. 6)*

18 69 37.9 -22.717 17.554
(35. 2-41. 2)

30 45 53.6 -25.359 17.554
(49. 4-58.7)

36 57 61.3 -26.379 17.554
(55. 7-67.2)

42 69 68.4 -27.211 17.554
(64.2-73. 2)

Total

* Numbers in parentheses are the 95-percent confidence limits.
** Standard deviation of the slope constant, b is *2. 946.
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pressure in both the Series I and Series II experimental groups com-
pared with controls. In terms of the magnitude of the overpressure of
the reflected shock (psig), '.he Series I mice - those held for one hour
at the pre-shot initial pressure before being returned to the Albuquerque
ambient pressure - showed a fourfold increase in tolerance to be asso-
ciated with a sixfold increase in the pre-shot ambient pressure. Series
II animals - those returned to the Albuquerque ambient pressure immedi-
ately after exposure to blast - only exhibited a threefold increase in tol-
erance associated with the same sixfold increase in pre-shot ambient ores-
sure.

The differences between the Series I and II data - shown clearly in
Figure 5 - are of considerable interest and deserve several comments.
First, in the experiments involving pre-shot pressures less than the
Albuquerque ambient, blast tolerance was higher in the Series II than in
the Series I mice. This means that mortality due to blast can be reduced
by promptly pressurizing the animal after exposure to blast, as was the
case for the Series II animals. This experience, consistent with the findings
of Clemedson1 0 and Benzinger I1l who demonstrated experimentally that
early pressurization following a severe blast injury was beneficial and effec-
tive in reducing nortality, was not unanticipated since arterial air emboli,
entering the circulation from the injured lung and known to be a prominent
cause of early lethality in blasted animals, would be expected to decrease
in size with pressurization and therefore become less hazardous to the
animal.

Secondly and in contrast to the above results, the present study showed
that blast tolerance of the Series I was greater than that of the Series II
animals in all experiments involving pre-shot pressures above the
Albuquerque ambient. These data mean that decompression carried out
immediately after blast exposure, as was done in the Series II groups, in-
creases lethality. One probable explanation is that blast-produced arterial
emboli grow in size and therefore become a greater challenge to the animal.
Another possibility is that more arterial emboli are produced by the decom-
pression, a likely sequence of events should air trapping in the distal airways
occur as a consequence of intra-bronchial hemorrhage, a not uncommon
finding in blast-injured lungs.

Third, the Series I experiments in which the animals were held for one
hour at the pre-shot ambient before being returned to laboratory pressures,
no doubt are a more valid indication of the true variation in blast tolerance
due to ambient pressure changes than are the Series II data. This seems
so because (a) air emboli during the hold period have time to produce their
biological effects, to decrease in size or to disappear from the circulation
and (b) most individuals injured by blast are likely to be treated and held at
the ambient pressure existing in the environment in which they were exposed.
However, important exceptions to this statement are not improbable. For
example, air evacuation of blast casualties could involve hazardous pressure
changes. The post-exposure course of blast injuries occurring aloft in air-
craft and during pressurized mining and tunnelng operations could be worsen-
ed, improved or remain unchanged depending upon what pressure variations

-14-
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occurred. Since control of the post-exposure pressure is not always im-
possible even in some emergencies, those who treat blast casualties
should know two results of the present study; namely, (a) that the rate
and range of decompression tolerated without demonstrable effect by con-
trol mice proved hazardous to blast-injured animals and (b) the rate and
range of compression, producing no effect in controls when applied to
exFerimental animals immediately after blast exposure, reduced mortality
significantly.

Fourth, lethality-tire data, limited in the Series I animals mostly to
crude observation of body temperature and and the presence or absence of
rigor, wouLA' aid further analysis of the differences noted between Series I
and II mice. Such information will be forthcoming in future experiments
since the end-plate of the shock tube has been fitted with an observation
window.

Fifth, though the Series I data, as noted above, seem more applicable
than the Series II results to most blast situations in "real life, " it is well
to consider the validity of the Series I findings further. In this regard,
there are at least three matters of interest. The first is whether or not
exposing an animal to a series of "sharp"-rising pressure pulses as exem-
plified in the lower left portion of Figure 1 bears any similarity to an ex-
posure involving only a single "sharp"-rising pressure as might occur near
a detonation in the open or in an open-ended or vented shock tube. Though
these two situations, a single versus a repetitive pressure pulse, do seem
different on the surface, the P 5 0 figure of 31.0 psi (29.3 - 33. 3), referable
to an ambient pressure of 12 psi found in the present study, is not signifi-
cantly different from those reported for mice in previous investigatins with
"long"-duration overpressures carried out at Albuquerque altitude; Z, 4, 12, 13
namely, 29. 8 * 0. 8 psi for repetitive shock-tube pulses of 6 - 8 sec -uration;
30. 7 * 0. 6 psi for s.ngle shock-tube pulses of 400 msec duration; 29. 0 * 0. 6
psi for single shock-tube pulses of 3 - 4 msec duration; 26. 0 * 0. 4 psi for
single high-explosive pulses of 2. 1 msec duration; and 29.9 * 1.1 psi for
sit.gle high-explosive pulses of 1.3 msec duration. These data give power
to the argument that it is the initial "sharp"-rising portion of a repetitive
pulse of decreasing pressure that is definitive in producing lethality and not
the .- zond and subsequent oscillations, which indeed, seem to have little de-
tectable effect.

Then, there is the question of possible differences in biological effect
when using the shock-tube procedures described compared with actual free-
field exposures to blast at various ambient pressures. For example, the
technique developed represents an attempt to sinulate a "real-life" blast
situation in the laboratory, but the pressure-time variations in the shock
tube - particularly over the immediate post-shot period - were hardly con-
stant for the various experiments, represent departures from the ideal, and
embody the potential for introducing variables into the experimental situation.
Whether or not these may be significant, and if so, eliminated by improving the
technique employed is not clear at the present time. However, appropriate
work is under way in the laboratory and free-field experiments at different
ambient pressures to check the shock tube data are being planned.

-15-



Also, since the P50 figures determined for the different ambient
pressures represent an equal challenge to the animal -that is, the over-
pressures of 20.3, 31.0, 44. 5, 55.3 and 91.8 psi above their respective
ambients of 7, 12, 18, 24, and 42 psi are biologically equivalent - one
searches for a constant parameter which, if approximately the same for
each experimental group, might indicate consistency in the data, aid in
their interpretation and increase confidence in the overall findings. That
the pressure ratio, AP/P i , where P.is the pre-shot ambient pressure
and therefore the pressure inside the air-containing cavities of the body
and AP is the blast overpressure and therefore the external pressure
loading an animal, might be such a parameter is supported by the common-
sense view that blast effects are sure to be importantly related to the
magnitudes of the internal and external pressures, by the work of Haber
and Clamann on the physics of rapid decompression, 14 by the findings of
Luft and Bancroft 1 5 in biological studies of decompression and bv White
et al. 5 in blast studies wherein pulmonary lesions in dogs were correlated
to the pressure ratio for nuclear blast waves inside shelters that rose in
"steps" or in a "saw-toothed" manner. In this regard, the results of the
present study are encouraging.

The pressure ratios shown in Table 2 are not constant, but ranged from
2.9 to 2. 2 when the pre -exposure ambient pressure was varied from 7 to
42 psi. Blast tolerance, expressed this way, decreased by a factor of 1.3
or near 25 per cent when there was a sixfold increase in ambient pressure.
If one uses the average pressure ratio of 2. 5 shown in Table 2, it is possible
to say that the P50 ratios only varied about 16 and 12 per cent above and
below the average, respectively.

While experimental variations of these magnitudes are frequently noted
in biological studies, the consistent and apparently not random decrease in
the P50 pressure ratios with progressive elevation of the ambient pressures
found in the Series I experiments not only stimulates one to search further
for analytical understanding of the observed data to improve the grasp of
etiologic mechanisms, but prompts a cautious approach to drawing general
conclusions applicable to all mammalian species including man on the basis
of the experiments reported here on mice.

Fortunately, it is now possible to say that similar studies have been
completed using rats and guinea pigs. Preliminary analyses of the data show
some randomness in the pressure-ratio figures and, in general, similar
trends in blast tolerance with variations in the ambient pressure. Whether
or not the pressure-ratio associated with such experiments is indeed a con-
stant, with the differences noted indicating only "hormal" experimental error
and chance variations, cannot be stated now. But if results from future
experiments with other species indicate that the LDr 0 s can be expressed as
multiples of the initial prebsure, biological blast scaling as a function of
ambient pressure will become a relatively simple matter. For example,
man's tolerance (LD5 0 -24-hours) to "sharp"-rising overpressures of 400-
msec duration has been zalculated to be 50 psig from extrapolation of an
interspecies correlation involving six different mammals. 2Since the data
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were compiled at an ambient pressure of 12. 0 psia, the overpressure -
normalized to the initial pressure - would be 4. 2 atm. Consequently, to
obtain the LD 5 0 for "long"-duration air blasts for different ambient
pressures, one may tentatively multiply the ambient pressure of interest
by 4.2. Thus at sea level (14.7 psia), the calculated LD 5 0 for man would
be 62 psig; at Z6, 400 ft (5. 2 psia) it would be 22 psig. It is well t
emphasize the tentative and uncertain nature of these procedures, and it
is no doubt premature to dwell on this topic further. Let it suffice to say
that full understanding of biological blast scaling must await the results
of future work.

Be this as it may, -t is currently quite clear that the ambient pressure
is indeed a physical parameter of major importance in specifying blast
effects. Consequently, recording the local barometric pressure now needs
to be considered a requirement in all quantative investigations of blast
tolerance.
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